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1 Proving the (S2) Condition Via Compact Exhaustion

1.1 Compact exhaustion of convex open sets

Our setting is a σ-finite measure space (M,λ) with a measureable map ϕ : M → X, where
U is the collection of open convex subsets of X. We are trying to measure

λ×n

{
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

}
= exp(n · s(U) + o(n))

(if it is finite for each each n, otherwise we get s(U) =∞ and RHS =∞). This exceptional
case is not an issue if we can guarantee at most exponential growth, e.g. if λ(M) <∞.

We can also define a point function

s(x) = inf
U3x

s(U),

and this is upper semicontinuous and concave. The next step needs an extra condition:

Each U ∈ U is a countable union of compact convex sets.

Here are examples where we can prove this property.

Example 1.1. X = Rd. Let U be convex and open, and let Fn = {x ∈ U : |x| ≤
n,dist(x, U c) ≥ 1/n}. This is a closed subset of U (which is bounded and hence compact),
and U =

⋃
n Fn. To show that this is convex, we need to make sure the last condition

preserves convexity. Observe that this condition holds iff B1/n(x) ⊆ U . If this holds at x
and y, then

B1/n(tx+ (1− t)y) = tB1/n(x) + (1− t)B1/n(y) ⊆ U.

Example 1.2. X = Y ∗, where Y is a Banach space and X has the weak*-topology.

To prove the second example, we need the following:
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Lemma 1.1. For X = Y ∗, if U ∈ U , then there exist y1, . . . , yk and an open, convex
V ⊆ Rk such that

U = {x : (〈x, y1〉, . . . , 〈x, yk〉) ∈ V }

i.e. U = L−1[V ], where L : X → Rk sends x 7→ (〈x, y1〉, . . . , 〈x, yk〉).

Proof. Assume U 3 0, so there exist linearly independent y1, . . . , yk ∈ Y and a neighbor-
hood W of 0 in Rk such that U ⊇ L−1[W ] (L as above). The main work is showing that
U = L−1[V ] for some V ⊆ Rk. It is equivalent to show that U = U + z for any z ∈ kerL.

Suppose z ∈ kerL ⊆ U and so 1
εz ∈ U for all ε. We have, by convexity, that U ⊇ (1−ε)U

for all ε ∈ [0, 1]. Similarly, U ⊇ (1− ε)U + εu, where u ∈ U . So, in particular,

U ⊇ (1− ε)U + ε · 1

ε
z = (1− ε)U + z

for all ε. Hence,

U ⊇
⋃

1>ε>0

(1− ε)U + z = U + z.

By symmetry, U = U + z.

Proposition 1.1. X = Y ∗ has the desired property.

Proof. Let U = L−1[V ] =
⋃
n L
−1[Fn] as above, where L−1[Fn] are weak* closed and

convex. By Alaoglu’s theorem, X =
⋃
nBn, where Bn is compact and convex, and so

U =
⋃
n(L−1[Fn] ∩Bn).

1.2 Compact exhaustion implies (S2) condition

Proposition 1.2. Suppose that X and U have this property. Then the (S2) condition

s(U) = sup{s(K) : K ⊆ U is compact}

holds, where

s(K) := inf{max
i
s(Ui) : U1, . . . , Uk ∈ U ,K ⊆ U1 ∪ · · · ∪ Uk}.

Proof. Recall that if s(U) > −∞, then

s(U) = lim
n

log λ×n({ 1n
∑n

i=1 ϕ(pi) ∈ U})
n

= sup
n

log λ×n({ 1n
∑n

i=1 ϕ(pi) ∈ U})
n

.

Suppose a < s(U). Then by this latter formulation for s(U), there is some m such that
log(λ×m({· · · ∈ U}))/m > a. Write U =

⋃
k Fk where the Fk are compact and convex.
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So λ×m({· · · ∈ U}) =↑ limk λ
×m({· · · ∈ Fk}). So there is a compact convex F ⊇ U with

log λ×m(···∈F})
m > a. By convexity of F , this gives

log λ×`m({ 1
`m

∑`m
i=1 · · · ∈ F})

`m
> a

for all `. Now suppose F ⊆ U1 ∪ · · · ∪ Uk with the Ui ∈ U . Then λ×`m({· · · ∈ F}) ≤
kmaxi λ

×`m({· · · ∈ Ui}). So

log λ×`m({· · · ∈ F})
`m

≤ o(1) + max
i

log λ`m({· · · ∈ Ui})
`m︸ ︷︷ ︸
→s(Ui)

.

The lim sup of this as `→∞ is a lower bound on maxi s(Ui) whenever F ⊆ U1 ∪ · · · ∪ Uk.
Hence, s(F ) ≥ a. Since a was arbitrary < s(U), we have (S2).

1.3 Special cases of our construction

Let’s take stock of what we have so far: There exists s : U → [−∞,∞] satisfying (S1) and
(S2) such that

λ×n

(
p ∈Mn :

1

n

n∑
i=1

ϕ(pi) ∈ U

)
= exp(n · s(U) + o(n))

as n → ∞ for all U ∈ U . We also have an upper semicontinuous point function s : X →
[−∞,∞] with s(U) = sup{s(x) : x ∈ U}. Also, if s : U → [−∞,∞] is locally finite, then
s : X → [−∞,∞) and is concave.

Here are a few notable special cases:

Example 1.3. Let M = A be a finite alphabet with λ as counting measure. Then s(U) ≤
log |A| for all U , and ϕ(a) = δa ∈ P (A). Then 1

n

∑n
i=1 ϕ(ai) is the empirical distribution

pa, and so our conclusion is

|Tn(U)| = exp(n sup
p∈U

s(p) + o(n)).

Example 1.4. Let X = Rd, and let ξ1, ξ2, . . . be iid random variables with values in Rd.
So in the background, there is a probability space (M,λ) and measurable ϕ : M → Rd

such that (ξ1, ξ2, . . . )
d
= (ϕ(p1), ϕ(p2), . . . ), where (p1, p2, . . . ) ∼ λ×∞. Then there exists a

point function s : Rd → [−∞, 0] such that

P

(
1

n

n∑
i=1

ξi ∈ U

)
= exp

(
n · sup

x∈U
s(x) + o(n)

)
.

(Note that s(x) ≤ 0 for all x because s(U) ≤ log λ(M) = 0 for all U .) If this event is
unlikely (prob → 0 as n→∞), then the event is called a large deviation, and this is the
beginning of “Large Deviations Theory.”
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