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1 Proving the (S2) Condition Via Compact Exhaustion

1.1 Compact exhaustion of convex open sets

Our setting is a o-finite measure space (M, \) with a measureable map ¢ : M — X, where
U is the collection of open convex subsets of X. We are trying to measure

A" {p e M"™: %Z(p(pl) € U} =exp(n - s(U) + o(n))
i=1

(if it is finite for each each n, otherwise we get s(U) = oo and RHS = o0). This exceptional
case is not an issue if we can guarantee at most exponential growth, e.g. if A(M) < oo.
We can also define a point function

s(x) = inf (),

and this is upper semicontinuous and concave. The next step needs an extra condition:
Each U € U is a countable union of compact convex sets.
Here are examples where we can prove this property.

Example 1.1. X = R% Let U be convex and open, and let F,, = {x € U : |z| <
n,dist(z, U¢) > 1/n}. This is a closed subset of U (which is bounded and hence compact),
and U = {J,, F5,. To show that this is convex, we need to make sure the last condition
preserves convexity. Observe that this condition holds iff B/, (z) C U. If this holds at
and y, then

Bip(tz 4 (1= t)y) = tByn(x) + (1 =) Byn(y) S U

Example 1.2. X =Y*, where Y is a Banach space and X has the weak*-topology.

To prove the second example, we need the following:



Lemma 1.1. For X = Y™, o«f U € U, then there exist y1,...,yr and an open, convexr
V C RF such that

U={z:({(z,y1), - (v, ) €V}
i.e. U= L7V], where L : X — RF sends x — ((x,y1),...,{x,y)).

Proof. Assume U > 0, so there exist linearly independent yq,...,yr € Y and a neighbor-
hood W of 0 in R¥ such that U D L~'[W] (L as above). The main work is showing that
U = L7[V] for some V C RF. Tt is equivalent to show that U = U + z for any z € ker L.

Suppose z € ker L C U and so %z € U for all e. We have, by convexity, that U O (1—¢)U
for all € € [0,1]. Similarly, U 2 (1 — &)U + eu, where u € U. So, in particular,

1
UQ(l—s)U+s'gz:(1—5)U+z

for all e. Hence,
U2 |J -aU+z2=U+=
1>e>0

By symmetry, U = U + z. O
Proposition 1.1. X = Y™ has the desired property.

Proof. Let U = L7YV] = U, L7[F,] as above, where L™![F,] are weak* closed and
convex. By Alaoglu’s theorem, X = |, B,,, where B,, is compact and convex, and so
U =U,(L'[F) N By). O

1.2 Compact exhaustion implies (S2) condition
Proposition 1.2. Suppose that X and U have this property. Then the (S2) condition
s(U) =sup{s(K) : K CU is compact}
holds, where
S(K) i= inf{maxs(U;) : Uy, ..., Uy € U, K U U= U T},
Proof. Recall that if s(U) > —oo, then

S(U) = lim log A" ({5 Yoi-y ¢(p) € U}) up 128 N s wlp) € U

n n n n

Suppose a < s(U). Then by this latter formulation for s(U), there is some m such that
log(A*™({--- € U}))/m > a. Write U = |J, F}, where the Fj, are compact and convex.



So MM ({--- € U}) =1 limp A*™({--- € Fy}). So there is a compact convex F' D U with
log \*™(---€F'})

> a. By convexity of F, this gives

log A ({ o 5™ --- € F})
>
Im
for all £. Now suppose F' C U; U --- U U, with the U; € Y. Then )\”m({- e F}) <
kmax; \*({--- € U;}). So
log)\xgm({ -~ e F})
< o(1 .
Im <o(l) + mlax m

HS(UZ)

a

log /\em({- e U})

The lim sup of this as ¢ — oo is a lower bound on max; s(U;) whenever FF C U; U --- U Uy.
Hence, s(F') > a. Since a was arbitrary < s(U), we have (S2). O

1.3 Special cases of our construction

Let’s take stock of what we have so far: There exists s : U — [—00, 00] satisfying (S1) and
(S2) such that

AT <p eM": %Zw(pi) € U> =exp(n - s(U) + o(n))

i=1
as n — oo for all U € U. We also have an upper semicontinuous point function s : X —
[—00,00] with s(U) = sup{s(z) : z € U}. Also, if s : U — [—00, 0] is locally finite, then
s: X — [—00,00) and is concave.
Here are a few notable special cases:

Example 1.3. Let M = A be a finite alphabet with A\ as counting measure. Then s(U) <
log |A| for all U, and ¢(a) = §, € P(A). Then 13" | (a;) is the empirical distribution
Pa, and so our conclusion is

Tn(U)] = exp(nigg s(p) + o(n)).

Example 1.4. Let X = R% and let &, &9, ... be iid random variables with values in R
So in the background, there is a probability space (M, \) and measurable ¢ : M — R4

such that (&1,&2,...) 4 (p(p1),(p2),...), where (p1,pa,...) ~ A**°. Then there exists a
point function s : RY — [—o0, 0] such that

P (; ég c U) ~ exp <n - sup s(x) + O(n)) .

zeU

(Note that s(x) < 0 for all x because s(U) < logA(M) = 0 for all U.) If this event is
unlikely (prob — 0 as n — 00), then the event is called a large deviation, and this is the
beginning of “Large Deviations Theory.”
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